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ABSTRACT

The equations governing the flow of viscoelastic liquids are classified

according to the symbol of their differential operators. Propagation of

singularities is discussed and conditions for a change of type are

investigated. The vorticity equation for steady flow can change type when a

critical condition involving speed and stresses is satisfied. This leads to a

partitioning of the field of flow into subcritical and supercritical regions,

as in the problem of transonic flow.
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SIGNIFICANCE AND EXPLANATION

Viscoelastic liquids exhibit a number of strange and unexpected phenomena

when the influence of elasticity (the "Weissenberg number") is high.

Numerical simulations of high Weissenberg number flows have encountered

considerable difficulties.

This paper advances the idea that some properties of flow as well as some

problems of numerical integration may be associated with a change of type in

the governing equations. Many models of viscoelastic fluids predict such a
.'9.

change of type for steady flow, similar to a sonic transition in gas

dynamics. We investigate the conditions for such a transition and discuss

various applications.
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HYPERBOLICITY AND CHANGE OF TYPE IN THE FLOW OF VISCOELASTIC FLUIDS

Daniel D. Joseph , Michael Renardy
2 and Jean-Claude Saut

3

1. Introduction

The equations of steady gas dynamics change type when the speed of the fluid at some

point exceeds the speed of sound. If this happens, then discontinuities can appear in the

supersonic region. We are interested in the possibility that many strange effects in the

flow of viscoelastic liquids, as well as difficulties in numerical simulation, are also

associated with the appeartnce of real characteristics and a change of type, analogous to

the sonic transition.

For a physical interpretation, it is necessary to identify the variables which may

propagate and become discontinuous. In gas dynamics, there are compression waves and shock

% waves of compression. In the present paper, we deal with incompressible materials, so

compression is impossible. Instead, we can exhibit cases where singular shear surfaces

propagate along characteristics (Chapters 6,7). In steady flow, the vorticity is the

variable which is affected by a change of type and may become discontinuous (Chapters 8-

11 ). The implications of hyperbolicity and change of type for the interpretation of

experiments are not yet well understood.

The organization of our paper is shown in the Table of Contents. In 12, we motivate

our study by suggesting that one of the main unsolved practical problems of computation of

viscoelastic flow may be partly due to the problem of change of type. We suggest that the

solution of this problem is to be found in recently developed switching algorithms of the

type used in transonic flow. In 13 we define some basic concepts needed in our study,

including elliptic, hyperbolic, characteristic, symbol of an operator and Hadamard

instability. We also give some applications of these concepts which arise in modeling

I Departmaent of Aerospace Engineering and Mechanics, University of Minnesota,
110 Union Street, 8.E., Minneapolis, N 554552 Department of Mathematics and Mathematics Research Center,
University of Wisconsin-adison, Madison, WI 537053 Department of Mathematics, Universite de Paria-Sud, P-91405, Orsay, France

1ponsored by:
The United States Army under Contract No. DAAG29-82-K0051 and by the Fluid Mechanics
Branch of the National Science Foundation.2The United States Army under Contract No. DAAG29-80-C-0041. This material is based upon
work supported by the National Science Foundation under Grant No@. MCS-7927062, Nod. 2,
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phase changes and may be relevant in analyzing some instabilities in the extrusion of

polymers from capillary tubes. Chapter 4 discusses characteristics and classification of

% .type for first order quasilinear systems.

In Chapter 5, we look at constitutive equations for viscoelastic fluids from the point

of view of classification of type. For this, we have to maintain a distinction between

fluids with and without Newtonian viscosity. In Oldroyd models, the term with Newtonian

viscosity is the one associated with a retardation time. The addition of even small

amounts of Newtonian viscosity can smooth discontinuities, replacing sharp fronts by thin

layers and thus masking the underlying dynamics. To highlight the effect of hyperbolicity,

we confine our attention to models without Newtonian viscosity. In particular, we focus on

a three-parameter family of nonlinear Oldroyd models containing the upper and lower

convected and corotational Maxwell models. The occurrence of Hadamard type instabilities

for these models is discussed. These models also form the basis for the discussion of

steady flows in Chapters 9-11. We also discuss more general models of integral type. It

is shown that the principal part of the linearization at any given motion has the form of a

rate equation not involving integrals, provided that the integral kernels have sufficient

smoothness. Thus the discussion of change of type does not necessarily require a special

constitutive model.

Chapter 6 discusses the linear system of equations for motion perturbing rest. The

wave speed along characteristics is given by G(O)lp, where G(O) is the instantaneous

value of the relaxation modulus G(s) and p is the density. We review recent results on

the propagation of slip surfaces for velocity and displacement, which show in particular

the crucial dependence on the nature of the kernel G(s). In particular, consideration is

given to the possibility that G(O) or G'(0) may be infinite. In Chapter 7, we discuss

the formation and propagation of slip surfaces in nonlinear shearing problems treated by

Coleman and Gurtin (61, (7] and Slemrod (43], [44]. We discuss the application of their

results to melt fracture.

In Chapter 8 we take up the analysis of change of type in steady problems. This is a

natural question from a mathematical point of view, but the first studies of it in the

II
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theory of viscoelastic fluids seem to he in the work of Rutkevich [40, p. 44-45], who

analyzed the two dimensional equations for an upper convected Maxwell model. Oltman and

Denn (491 and Luskin [27] classified the linearized equations perturbing uniform flow with

velocity U of an upper convected Maxwell fluid. Our analysis in Chapter 8 generalizes

the results of Ultman and Denn and Luskin to a wider class of constitutive laws. There is

a change of type leading to real characteristics when the viscoelastic Mach number

M U/c, c = /G(O)/P

exceeds one. The vorticity is identified as the variable which can become discontinuous

along these characteristics. We shall, somewhat loosely, say that "the vorticity changes

type". In Chapter 9, we give a complete classification of the quasilinear system

describing the upper convected Maxwell model in arbitrary steady two-dimensional motions.

The streamlines are double characteristics. The vorticity changes its type when the speeds

are great enough. In the supercritical (hyperbolic) case, there are two families of real

characteristics for the vorticity, but the formula for the characteristics depends on the

solution. There are also complex roots to the characteristic equation associated with the

elliptic equation giving the vorticity as the Laplacian of the stream function. In Chapter

10, we discuss a number of specific flows for an upper convected Maxwell fluid. These

flows include plane parallel shear flow, steady extensional flow, sink flow in the plane

and shear flow outside a rotating cylinder. We discuss characteristics for motions

perturbing those flows and characterize the regions of flow where the vorticity equation is

hyperbolic. In Chapter 11, we extend our results to a three parameter family of Oldroyd

models which contains the upper and lower convected and corotational Maxwell models as

special cases. The vorticity is again identified as the variable which changes its type.

We compute the characteristic directions for the nonlinear problem without approximation.

We exhibit special cases which show that the partitioning of the flow into sub- and

supercritical regions is model sensitive. It is therefore desirable to develop this type

of theory on a high level of generality, suppressing models. We take some steps in that

direction in Chapter 12, where we study fading memory fluids of Coleman-Moll type.

-3-
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2. THE HIGH WEISSENBERG tWMSER PROBLEM

* The Weissenberg number is a number which is large when the elasticity of the fluid is

important. It is defined differently by different authors. Many authors have it

' proportional to a relaxation time for the fluid, or it may be viewed as the ratio of the

first normal stress to the shear stress. The parameter of interest in this study is a

viscoelastic Mach number, which is the ratio of a typical speed to a wave speed, defined

differently for each problem, and is large when the relaxation time is large.

The high Weissenberg number problem is that the numerical integration of equations for

viscoelastic fluids cannot be done when the Weissenberg number is high, or even moderate.

This problem is not solved by changing the model or by different methods of numerical

integration. Maybe there is an underlying mathematical problem.

It is probable that some numerical problems at high Weissenberg number are actually

associated with a change of type, like the transition from subsonic flow to supersonic

flow, and that the solution of the problem is to be sought in various hyperbolic

t algorithms, especially those recently introduced for transonic flow.

To compute subsonic flow you use some central differences. To compute supersonic flow

you use the method of characteristics. It would be a disaster to try to do supersonic flow

by central differencing of the type used for Laplaces equation.

-. In the flow over a bump, say an airfoil with the free stream ever so slightly less

than M1,

.75 <M < 1

we get a supersonic bubble with unknown boundaries (see Fig. 1).

M < 1 / M> shock

/ wave

V%'
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*, To solve this problem you have to find the sonic line, the position and strength of the

shock wave. This is a very hard free boundary problem. It wasn't solved until 1971 when

Murman and Cole (32] realized that upwind differencing was necessary in the supersonic part

of the flow. In central differencing the nodal point is at the center. In upwind

differencing, the information at a nodal point is determined only by the flow upstream (see

Fig. 2).

0 0 0 0 0 0

c I
central differencing upwind differencing

Fig. 2.

Murman and Cole studied the small disturbance equations. They derived a switching scheme

of numerical analysis which tells the computer to use central differencing if the flow is

subsonic and upwind differencing if the flow is supersonic. Their upwind differencing

equation can be interpreted as approximating a differential equation with an artificial

viscosity proportional to the mesh size 131].

Murman and Coles' method was the first success. But this method is too simple for the

full nonlinear potential. This more complicated problem was successfully attacked by the

artificial viscosity method of Jameson (19], (20], whose work makes transonic computation

possible in a practical sense.

People doing flow computations for viscoelastic fluids are also able to go to higher

Weissenberg numbers when they have constitutive equations with more Newtonian viscosity.

This procedure masks the problem of dealing with change of type instead of solving it.

% %~
*.L%4~k-.P'.M 'C A-.
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3. CONCEPTS AND SOME APPLICATIONS OF CHANGE OF TYPE

This paper deals with equations which undergo a change of type. To make our notions

precise we shall need some classical definitions related to the type of a partial

- differential equation.
.'- (3.1) PLxot, ,,-..,~-

Consider the linear differential operator

at' an

where

:' >, x =(x1x2 ,...xn) and t

are space and time coordinates. We define the

(3.2) Symbol of P - P(x,t,iE 0 i I, ... i n)

where i 1. To form the symbol we replace the arguments at a '., •. at' 7xI1 "'x on

with the Fourier variables i0ii1,...,JiFn . In this way we obtain a polynomial in the
n

real variables E. The symbol of the Laplace operator -A is I the symbol of the
a 2  2 n 2 i-I a

. 4 wave oprt 2- is -E 0 +~ E; the symbol of the heat operator at - is
at i-i

n 2
- i 0 + i . The symbol for a system of equations is defined in a similar fashion and is

" ~. a matrix with polynomial entries.

Characteristic curves are lines along which discontinuous data may propagate. in
.- dimensions higher than two we may speak of characteristic surfaces. Let m be the highest

order of the derivatives in P. Then

p a(Xx,t)a + a (x,t)a,
Ial-m Ial<m

where a - (a 0 1 ,....n) is a multi-index, lal a [ mi and

n...

a- alaI

at 0 ax 1 . axn
1 n

The equation

(3.3) a (x,t) Ca 0, a = (a 0.,/.. I a I -m

a 0 an

0 n

-6-
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is called the characteristic equation for P. Only the principal part of P, the terms of

highest order, appears in (3.3).

A surface S in (1,t) space is characteristic for P at a point s e S if the

- normal vector to S at s satisfies the characteristic equation. If a = (0'. .. 'o) is

e a unit normal vector at s, S is characteristic for P if and only if

(3.4) an2 _1ad a (x)Oa - 0.
4 k  a-0 101-

Th lplne 2 2 n i 02=
The characteristic equation for Laplaces equation Iau/ax k-i 0 is k

There are no real characteristics because (3.4), is not satisfied. More generally, t

operators P for which, at every point (N,t) the equation (3.4)2 has no nontrivial Ce

zeroes are called elliptic. For systems, ellipticity means that the only real zeroes of

the determinant of the matrix symbol A(L.,E ,F..., n ) are (EA2,.., n

Elliptic problems have existence, uniqueness and continuous dependence on data (are

well posed) as boundary value problems [], [26].

The initial value problem, the Cauchy problem, is not well posed for elliptic

equations. For example, a Cauchy problem for Laplaces equation in the domain

D -(x,y x > , -< y < is

Au m 0 in D,

(3.5) u(Oy) - 0
au
5x (0,y) - U(y)

where

Uy) - sin ny, p > 0

The solution of (3.5) is

u(x,y) n - sin ny sinh nx
n

The mapping (u, - xjux - u for x > 0 is not continuous since U(y) is small when

n is large and u(x,y) is very big. Small data at x - 0 lead to larger and larger

-7-

.%:



%° %

oscillations for x > 0. This lack of continuous dependence is called Hadamard

instability. It can be shown that (3.5) has no solution if UIC) is not analytic.

The initial value problem, or mixed initial-boundary value problems are well-posed for

hyperbolic equations like the wave equation. For example, the characteristic equation

13.4)2

a2 c = 0

for the n-dimensional wave equation

a2u c 
2Au

at
2

S. satisfies the characteristic equation (3.4), when a0 +c//cI/7  Therefore a surface

S'! is characteristic for the wave equation if and only if its normal makes an angle

B, cos B = c/c+1, with the t axis. For the one-dimensional wave equation

A -
2/ax 2 , this implies that the family of lines xict const are characteristic.

The operator P of (3.1) is called strictly hyperbolic if all the roots of the

principal part of its symbol (3.2) are real and distinct for all (E n) e Rn\0. The

Cauchy problem is well posed and the boundary value problem is ill posed for hyperbolic

equations. The backward Cauchy problem where t is replaced with -t is also well-posed

for hyperbolic equations.

The Cauchy problem is well posed for parabolic problems but the backward Cauchy

.problem is ill posed. The classic example of a parabolic equation is the heat equation,

3u/at = Au. The characteristic equation (3.4)2 is

nr 2

% 2

Hence, from (3 .4 )1 20 1 and the characteristic surfaces are the hyperplanes

t - const. The Cauchy problem is not well posed for the backward heat equation 2= -u.
at

Operators of the form 2 + Lu, where L, like -A, is a positive definite elliptic
at

operator, are parabolic. These operators are strongly dissipative and lead to diffusion

N%%

',.,"
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rather than to propagation. Unlike hyperbolic operators, parabolic operators will smooth

initially discontinuous Cauchy data.

Two homogeneous scalar operators are said to be of the same type, if up to a

transformation of the independent variables, their symbols have the same asymptotic

behavior at infinity. If the asymptotic behavior of the symbol changes, then we say that

the equation changes type. For example, the Tricomi equation

, 2 u a 2 u

x ay2

is hyperbolic when y < 0 and elliptic when y > 0. Another example is the quasilinear

system

,:-.au. 80(v)
(3.6) t2 x ~v o

av au t 3
at = x

which is hyperbolic for a'(v) > 0 and elliptic for a'(v) < 0. These problems all

involve a change in the sign of the symbol and Hadamard instabilities. If we start with

initial data in the hyperbolic region, and if the solution of the Cauchy problem enters the

elliptic region, one has Hadamard instability and a loss of evolutionarity.

Problems of the form (3.6) suggest models for theories of phase changes in solids and

fluids. The van der Waals gas is a well-known classical example. In solid mechanics,

ideas of this type were introduced by J. Ericksen [12] in his study of elastic bars. We

- may suppose that the graph of o(v) is as shown in Fig. 3.

a

Hysteresis loop

N.iperbolic

/Hyp c . --. 

..

lliptic

Fig. 3. The system (3.6) is hyperbolic when a'(v) > 0.
The elliptic branch is unstable in the sense of Hadamard.

-9-
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The solid lines, where o'(v) > 0, lead to a hyperbolic equation and the dashed line leads

to an elliptic equation. The elliptic portion is c~jected because it will exhibit Hadamard

instabilities; and actual solutions are required to operate only on the hyperbolic parts of

the curve.. This leads to spatially segregated solutions, separated by lines of

discontinuity, each part operating on a different hyperbolic branch of the curve. There is

hysteresis and abrupt transitions in the response of such models. These features are all

present in the recent study of Hunter and Slemrod [17], which attempts to explain some

.-
observations of Tordella [47] of a type of melt fracture called ripple. This phenomenon

-. . shown hysteresis loops, double-valued shear rates at certain stresses and spatially

segregated flow regimes. Similar ideas have also been used to explain to phenomenon of

necking occurring in cold drawing of polymers [8].

Regirer and Rutkevich [36] have considered fluids of the Reiner-Rivlin type which

exhibit change of type. Their constitutive law is

JIM -p1 + nf(II)D ,

IT 2
where D - - (Vu + (Vu) ), II - tr D Written in terms of a stream function

- u,v) - (y,-1x ), the equation governing steady two-dimensional flows is as follows.

d L4 4 4 2 2 2
~ .(3.7) de1 f a [LI~ + "]~ + 2a2  + 4a j l - "(L-L.) )

I x4 By4 ax 2 3 aay y2 ax2

where H(*) is a nonlinear thrid order operator and the coefficients a are nonlinear

functions of the second derivatives of *. The characteristic curves y(x) are solutions

of

4 3 2
(3.8) a1y + 4a 3y + 2a2  - 4a 3yx + a1 = 0

It turns out that there are the following three cases

. (i) f + 211 f' > 0 (no real roots, elliptic),

(ii) f + 211 f' - 0 (parabolic),

(iii) f + 211 f' < 0 (four real roots, hyperbolic).

The hyperbolic regions are those where the stress decreases as a function of shear rate,

%-0 -
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and the elliptic regions are those where it increases. The unsteady problem corresponding

to (3.7) is
P WE(-;), L(*)) - H(*;).

When the right side is elliptic, this problem is parabolic and evolutionary (see Gelfand

(14]). When the right side changes type, evolutionarity is lost and Hadamard instability

occurs. Changes of type and Hadamard instabilities can occur in rheological problems which

are not esseentially one-dimensional and need not necessarily be associated with non-

monotone shear stress-shear rate laws. An interesting case of this type arises in a

stability analysis of plane Couette flow by Akbay, Becker, Xrozer and Sponagel (3], which

they suggest as an explanation for melt fracture. In order to obtain a manageable

equation, they introduce the "short memory approximation". This means that, in the memory

integrals occurring in the equation for the disturbances, only terms of first order in the

relaxation time of the fluid are kept. Proceeding thus, they find the following linearized

equation for the stream function in two dimensionst

a1 a 2 4T a4l
(a.) a +- - - * + TL

at.9 +x 2 ax (N K axlax2 2 a 2
1 2 N

!aX - 0 at x 2  O, x2  h•
ax2

2 2
Here L denotes the operator -- The problem is posed in the strip < x < ,

ax 2  ax1
0 < x2 < h. K is the shear rate of the basic Couette flow and T(), NI(K) are the shear

stress and the first normal stress difference as functions of the shear rate. Akbay et al.

find that (3.9) admits exponentially growing solutions if

(3.10) We - - > 4

It was pointed out by Ahrens, Joseph, Renardy and Renardy [2] that this instability is

associated with a change of type. If we consider the symbol of the differential operator,

i.e. if we formally set Li, - iS, then the left side of (3.9) becomes
at ax1  ax

I. -11-

.. ",. ,v
%.. % V

55.a* ***,-.~. %
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(3.11) p(o + cx 2 i)(-a

and the right side becomes

(3.12) -( " CI2 -
2
)
a B + T'(2 2 +- •

" ~This homogeneous fourth degree polynomial is positive definite for We < 4, but indefinite

for We > 4. For We > 4, one thus expects short-wave instabilities of a catastrophic

.5 nature, i.e. Re a becomes arbitrarily large as the wave length tends to zero. A more

precise, rigorous analysis and some criticisms of the assumption of short memory are given

, - in [2 ].

J .%
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% 4. QUASILINEAR SYSTEMS

The analysis of the equations of viscoelastic flow will be framed in terms of systems

of equations of first order. We consider linear systems and quasilinear systems. We write

the quasilinear system as

n au
(4.1)A - " , x - (t,xl,x 2 ,...,Xn)

where u = (ul,U2,...,uk) is a k vector and are k x k matrices which like f may

depend on x . and on the components of u. If A is independent of u, and f - Bsu,

then (3.7) is a linear system.

The following definitions apply to both linear and quasilinear systems. A surface

S defined by the equation *(txI,...,xn) - 0, is characteristic with respect to (4.1) at

x C(t,x1,*.X n ) if

, (4.2) det( A ) x) 0 0,'1 1 a"

If * Xn - f(x01 ... IXn1) ,  then

(an " n- 1

Anyone of the n + I quantities a#/axt in (4.2) may be regarded as an eigenvalue. We

shall say (4.1) is hyperbolic provided that - 4 is non-singular and for any choice of

the real parameters (X,, I = 0,1I....np t * ,1, the roots a = Gk of

n
(4.4) det(a. - I A,.a,) - 0

1.0
tl,

are real and are associated with k linearly independent characteristic vectors v

satisfying
n

-._ (4.5) Cav- ) xtv.
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First order systems can be of mixed type with real and complex eigenvalues, neither

totally elliptic or totally hyperbolic.

We are interested in two dimensional quasilinear problems of the form

au au au

(4.6) =t"+ Bix + C 7 f.

We consider one-dimensional evolution problems in which - 0 and steady problems in

which - 0. For evolution problems we suppose that A is not singular and write

4(4.7)+

The characteristic surface is 4(x,t) = 0 and (4.2) becomes

(4.8) det(kI +D B =

Ov *(x,t) 0 0, we have

Hence, (4.8) may be written

(4.9) det~g - ) 0,, -o

where dx/dt is the slope of the chracteristjc.

A linear system of the form (4.7) is said to be of evolution type if 3 has only real

eigenvalue, hyperbolic if of evolution type and B can be made diagonal, strictly

hyperbolic if S has simple real eigenvalues.

if the Cauchy problem for (4.7) with f - 0 is well-posed, then it must be of

evolution type. Solutions of the form u(x,t) - Bei (At+ux) are bounded for large Itj if

and only if the eigenvalues A/U of B are real (Gelfand (141).

Suppose u(x,t) is given on a curve f(x,t) - 0. If this line is characteristic then

the equation

du 9 u dt '2 dx

d'o = -a " + "X- To-

where t(s), x(s) is a parametric representation for the curve * = 0, and the

quasilinear equation (4.7) cannot be uniquely solved for the 2k derivatives au/at and

a_/3x. This special condition requires that the determinant of the coefficients of the

-14-
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derivatives vanish

l d ' d -2
ldt ldx

Identical considerations apply for the quasilinear steady problem

Such problems are frequently associated with a change of type, like transonic flow, in

which som regions of flow are subcritical and some supercritical. A typical example is

Tricomis equation. Other, more relevant examples are derived in §8-11.

It is not always possible to assign a definite type to a system of quasilinear

equations. We may have both real and complex eigenvalues. Nonlinear problems of mixed

type have not been thoroughly studied by mathematicians. Some special results have been

given by Mock [30]. Here it is perhaps useful to give some simple examples from

hydrodynamics.

'j"% Consider first the Euler equations for the flow of inviscid, incompressible fluids in

two dimensions

(4.10) P(*V)L + -p = div 9= 0

Let (u,v) be the components of u with respect to x and y. Then we can write (4.10)

4as

(4.11) .Aix + . - ,

where

92 ( u~v, ). 9x Tx s' ry"

- (fl,f2,o),[u 0o I/
" i = 0 u 0 ,U,'

02 v /: A2 " ov 1/o
0 P 0
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The characteristic equation for (4.11) is

d xlffi A 'I _ v u)(( 2  + 1) -

AX .-. streamlines are characteristic,
*dx: u

The presence of imaginary roots means that (4.11) is not hyperbolic. It is not elliptic

because the dtriatof the matrix symbol of (4. 11)

2 2
dot 0 o u +v -E E W + A ~ 2E+

11 2 P1 22 p

vanishes for uE v 2 -

Another example is from the theory of irrotational water waves. In this case the

velocity potential is elliptic but the height function is governed by a hyperbolic equation

giving rise to water waves.

O.% 4
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". 5. CONSTITUTIVE EQUATIONS

A constitutive equation relates stress to deformation. The stress in viscoelastic

fluids depends on the history of the deformation. Usually the history is defined on some

strain measure. The stress in Newtonian fluids depends on the instantaneous value of the

velocity gradient, it does not depend on the history of the deformation but only on the

instantaneous value of the symmetric part of the velocity gradient. In a viscoelastic

fluid the fluid has instantaneous elasticity. Elasticity is present also in inviscid

compressible fluids. For unsteady problems elasticity is associated with hyperbolic,

rather than parabolic response. In the elastic case discontinuities propagate along

characteristics which do not exist in the viscous (Newtonian) case. It is necessary to be

more precise about the difference between an elastic and viscous response.

Many constitutive models have been proposed. Each one leads to different answers for

the same problem though some groups have similar qualitative properties. In problems of

changing type the linearized part is of primary importance. The linear part may be of

three types:

1) Constitutive equations with some viscosity. The viscosity which we have in mind

is that which rheologists sometimes associate with a retardation time.

* 2) Constitutive equation without "viscosity". Integral type constitutive equations

with smooth kernels, and various types of rate equations in the class called Maxwell models

are of this type. These kind of equations allow propagation of rather than smoothing of

discontinuities. In some nonlinear models 1161, [281, [43], (44], (51] discontinuities may

arise, as do shocks in gas dynamics, from smooth data.

S. 3) Integral type constitutive equations with singular kernels. These are in a sense

intermediate between 1) and 2). Depending on the type of the singularity, the wave speeds

may be finite or infinite. However, even if they are finite, i.e. real characteristics

exist, there is no propagation of discontinuities (see Chapter 6).

The stress in an incompressible fluid is given by

(5.1) = =p +i,

where T_, the determinate stress (50], p. 176 (sometimes called the extra stress [48]),

-17-
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may be related to the deformation, whilst p, the reaction pressure, is determined only

through the equations of motion. An example of T in the class 1) of constitutive

equation with some viscosity is the Jeffreys model with two time constants, a relaxation

time AI and a retardation time 2 . This model may be written in rate form

(5.2) +nA + n= 2 T-,t

where n is a constant, called the zero shear rate viscosity, A Vu + Vu T , u u(x,t),

or in integral form

nA2  n A2* *t

5- - A[U(,t)] + .L1 - J ! A[u(xT]exp(-(tA )d

%The constant nX 2 /AI  is a second viscosity which is equal to the zero shear rate viscosity

when A2 - A1. It is this viscosity that we have in mind when we talk about

"with" or "without" viscosity. In 16 we show that (5.2) and (5.3) enjoy a certain general

status when they are regarded as holding only in motions which perturb a state of rest.

The Maxwell model arises from (5.2) and (5.3) when X2  is put to zero. In §6 we note

that the Maxwell model permits propagation of waves along characteristic with a finite

velocity of propagation, but such propaqation cannot occur for Jeffreys models; more

precisely the viscosity term A2 n/A1  smooths discontinuities in the same way that

*' ~.q viscosity smooths the discontinuities of solutions of Eulers equations for an inviscid

fluid.

SS% Nonlinear models can be classified according to the type of their linearization.

Popular models of the rate type include those due to Oldroyd [341, Leonov (251, Giesekus

[15]. These models generalize both Maxwell and Jeffreys type fluids, i.e. some have

"viscosity", some do not. Popular models of integral type include K-BKZ single integral

models (4], (22] which may be of type 2) or 3) depending on the nature of the kernel, and

the model of Curtiss and Bird [11], which contains a viscosity term.

.5..,
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We shall do some work with a three constant rate equation of Oldroyd type

DI
(5.4) + T - nA

" Here D/Dt is an invariant time derivative

. Dr aT

(5.5) - + (207)i + T - O- a( + TD)

where -1 ( a 4 1, - V + . (V. -VuT). The upper convected Maxwell model

has a 1 and
Dm 3T r Vr T

(5.6) - -- + (u.V)T Vu' -rVu
- . Dt Bt - -- -

where (Vu) au /ax The lower convected Maxwell model has a - -1 and
-ij i J*

(5.7) -= - --M + (U.V)r + _Vu + . .

. The corotational Maxwell model has a - 0. The inteqral model

(5.8) ,- T. exp[-(t - r)/X][, 1 C) - i]dr

is an alternative form of the upper convected Maxwell model (a - 1). The rate form

(5.4,6) may be obtained by differentiating (5.8) partially with respect to t, holding L

fixed. The expression

(5.9) 2 f-x[(

is equivalent to (5.4,7) with a - -1, jn the same way.

Rutkevich (40], [41] studies differential constitutive models (5.4) of Oldroyd type.

He linearizes these equations and the equations of motion at a state of no motion (B = 0)

and constant stress. He finds that a change of type leading to imaginary wave speeds and a

Hadamard type instability occur if the principal values of I satisfy certain

inequalities. If we denote these principal values by T1 I T2 > T3 , then Rutkevich's

-19-
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instability criterion reads as follows:

T3 <- • a-i,

.'T' I51)T > T a -1
T .T 3 > 2n

1  -, a3O

In order to assess the significance of these results, it is necessary to look also at

the integral models (5.8) and (5.9) corresponding to (5.4). Since 2C1  and Ct are

positive definite matrices, we find that T3 > - for a and 1 (fl for a--I.

Thus Rutkevich's instability criterion can not be achieved and must be considered

unphysical. This was also noticed by Crochet 110] who proved directly from the

differential equation that T3 - or, reap., T1 
< . for all time, if this is the case

initially.

Renardy [39] has shown that in fact loss of evolutionarity never occurs for a - ±1.

: . These two models are special cases of the Kaye-BKZ model [22], [4], which has the form

(5.11) -f a(t - ()(l- (a) - a- (8))ds

Here a is a positive kernel and the "strain energy" W is a scalar function of

1 1 = tr C;I(s) and 12 - tr (s). Renardy proved that the initial value problem is

always well posed, i.e. Hadamard type instability cannot occur, if W satisfies a strong

ellipticity condition of the same form as in nonlinear elasticity. This condition is in

particular satisfied if W is monotone in both arguments and a convex function of /I,

and I2. This obviously includes the cases W - II, W - 12, corresponding to (5.8),

(5.9). No such objections can be raised in the corotational case, a - 0. In fact, we

need only restrict attention to motions where - 0, and L and D are spatially

homogeneous, to see that (5.4) allows T - to reach any value. The instability in

this case is therefore genuine.

-20-
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It is instructive to look at special flow geometries. Por time-dependent simple

shear-flow, we have [21]

= --(t-s)/Xt)t'd
T = t e t C(s)cos(/ I a2 ft Kt'dt')ds.

Differentiating this with respect to t, we find

t - '1 -(t-s )/ -af a2 t
.- 0 n,.. ! ) sin(/ I

+ lower order terms

.A change of type occurs when the expression in brackets changes sign. For lal < 1, it is

possible to construct histories for the shear rate K(s) such that this is the case. For

steady shear flows, K S Koo the expression in brackets is positive and there is no change

of type, even though the shear stress-shear rate law for a * ±1 is non-monotone. The

case of simple elongation was considered by Renardy [38]. He finds that a change of type

can occur for -1 < a < -. Although Rutkevich's instability for a = ±1 is unphysical it

is nevertheless relevant for numerical calculations (see Crochet [10]). The reason is that

at high Weissenberg numbers the eigenvalues of I can be arbitrarily close to the stability

boundary ± x Numerical errors can push them beyond this limit, with disastrous results.

Most of the constitutive equations which have been proposed, all the ones considered

here, are simple fluids in which the stress is determined by the history of the relative

gradient of the deformation

_E~~)= Vxt(x,t),

where

S(Xt(''X,)') =Xt/aT

is the velocity of the particle x = Xt(x,t) at times I 4 t. The constitutive equation

satisfying material objectivity may be expressed by a functional [48,p. 80]

- '*

(5.12) (x,t) = P [gt(x,T)]

on the history of the relative Cauchy strain

C (X,T) =T F

.0 %-21-
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In order to give a precise meaning to an expression such as (5.12), it is necessary to

specify the set of arguments on which F is defined, called the domain of F or dom F.

Saut and Joseph [42], extending ideas of Coleman and Noll [9], have proposed to classify

*: constitutive laws according to the choice of this domain. Roughly, this associates the

nature of the stress-strain relation with the deformations which are allowed. In the

linearized case the stresses which are allowed are functionals in the topological dual of

dam F. The smaller dom F is, the larger is the dual, i.e. the more constitutive laws are

allowed. To be more precise, let C (T) be some given history and V(T) = C(x,t - T) be

a small perturbation. The linearization of r relative to C(T) can formally be written

as an integral

4. t

''(5.13) F[C(T) IS(r)j iJ K(Ct(T),t - T)C(T)dT

The class of admissible kernels E depends on which deformations c(T) are allowed. If,

C; following Coleman and Noll, is restricted to a weighted L2-space, then j must also be

in a weighted L2-space. If is restricted to a Sobolev space, then Dirac measures and

derivatives of Dirac measures can be included in K, thus admitting Jeffreys type models.

<2' To see the effects of hyperbolicity clearly we exclude these cases and adopt (5.13)

with a smooth kernel as the basis for our study of change of type.

. It will be useful in what follows to specify the quantities in (5.13) more

precisely. Let

5.14Xt(X,T) (x,T) + (x,T)

be the particle path for

x (x,t) = E°(x,t) ,

where E.0 is the position of x in some given motion and L(x,T) is a perturbation with

(x,t) - 0. Quadratic and higher order terms are neglected. To this order of

approximation

~0
(5.15) Ct(x,T) = C (x,T) + C(x,T)

.- =t

-22-
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.N. where

(516 C(x,) (VE 0)TtVO, C 0(x,t)

0~, (%Ty + (VU)T VE0, c(x,t) 0 o

Lot the perturbed extra stress be denoted by Land the unperturbed extra stress by ~

The total extra stress is 1 + T, where

t 0

IK[C~ t(x, ),t -TIS(X,T)dr

We assume that is a smooth function. Applying the substantial derivative

(a + U0.0+F - ) where LI is the unperturbed motion, we obtain

(5.9)+ uO-)j - ft K(' + uo.V)S(.,T)dT

.r + terms of lower differential order.

Noting that the position at time T of a particle must have the substantial derivative

zero, i.e.

(5.19) dt - - t---- + U(x,t).V CXt(,T) -0,

.*we find0

(5.20) -+ u (x,t).V -0

3E 0 0
- -+ U (x t),V + v(x,t)Y V 0

This yields

+ (U0.V))2 + (u 0 .V))(V OT VE + &VO

-VEI)TVI(L + (u0.v)) } + vjL+ O.V)E}) T VE-
at at

+ lower order terms

-23-

rr ..
% ,$% .. %% 6,

eb%

N6



OT. = ~ -F 0 (V(v.Vt 0)TVE 0

+ lower order term.

(& ~) T VVVE 0 + transpose + lower order term.

- %.SBy inserting this in (5.18), we find that the principal part Of the constitutive equation

is given by

(5.21 ( O-V. + N(X,t)Vv(x,t),

where

t 3
0 a

ijm n
-. 0k I

.1. Equations like (5.21) can also be derived when F is linearized at unsteady flows (112).
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6. SLIP SURFACE PROPAGATION IN PROBLEMS PERTURBING REST

0 0
In problems which perturb rest we have . - x, T 0 and

t
(6.1) = J G(t - T)A [u(x,T)]dT

A Newtonian part of the stress arises when

G(s) 0 us(s) + g(s)

where 8(s) is a Dirac measure and g(s) is a smooth kernel. Thus

(6.2) T - IA [u(x,t)J + J g(t - T)A [u(x,T)]d•

In the special case when g(s) is in exponential form (6.2) reduces to the model (5.3) of

Jeffreys with U - n 2 /) I. We introduce V here and elsewhere only to notice that if p

is small the underlying dynamics is close to U - 0 dynamics. When U 0 0, the dynamics

*is governed by

(6.3) G(0)A[U(x,t)] + G'(t - )l[u(x,T)]dT

and

(6.3) 2 0 at+ Vp -div T 0

, •where

(6.3)3 div u - 0

Equations (6.3) are a first order system, linear in the derivatives of p and the

components of u and T. If G(t - T) -conet exp{-(t - T)/)}, then the last term in

P (6.3)1 reduces to -T/A. In the analysis of characteristics using the Maxwell model the

term T/A is of lower order and it does not enter into the analysis of characteristics.

In general, for smooth G', in (6.3) the integral is of order -1 in t and +1 in

x, hence of order 0 as an operator in x and t, and is thus also of lower order.

This shows that we can analyze first order systems for general kernelsi we do not need

special models.
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The came of one-dimensional shearing motion can be used to discuss the effects of

viscosity, wave speed, wave amplitude and classify the kernels. in this case (6.3) reduces

- -. *to

3T t u(XT3t=G(O) I G(t - T) dT

-~~ (6.4)-

We may write (6.4) as

(6.5) -t+ 8-+ f 0

where

- 1G(O) 0

f G'(t - ) aux~t dr)

* .V'The eigenvalues

(6.6) C - t GOl

of D are the wave speeds along the characteristics

x t ct - const.

It is instructive to review the results of analysis of the following problem, known as

Stokes' or Rayleigha' problem, for a viscoelastic fluid. A fluid occupying a half space is

at rest for t 4 0. At times t ;P 0, the boundary of the fluid at x - 0 is made to move

forward with a constant speed. The problem may be described by the following equations

3u L 32 1 u + ~ 3u(x,r)
at x 2 ax 

2

(6.7) u(X,T) - 0, V T 4 0,

u(x,t) is bounded for positive values of x and t,

uCO,t) - H(t) t =
t > 0

-26-
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This problem has been studied by Narain and Joseph [33] when u 0 and u 0 and

by Renardy [371 for p - 0 and singular kernels. Other authors, Tanner [461, Straub [45],

Bnhme (5), Kazakia and Rivlin (24] have studied the problem for special constitutive

models. Tanner used an Oldroyd model B, which contains a contribution due to Newtonian

viscosity. This model does not require linearization, it automatically leads to a linear

problem. All authors solve the problem using a Laplace transform with respect to the time.

In the context of the present paper, the most interesting issue is the qualitative

behaviour of solutions in relation to properties of the kernel q. Zn particular, wave

speeds and the presence or absence of discontinuities are of interest. These questions

were addressed in (33], (37]. Not surprisingly, the crucial factor is the asymptotic

behaviour of the Laplace transform of g at infinity or in other words, the symbol of theI operator in (6.7). The qualitative nature of solutions in thus determined by the type of

the equation. With u(x,a)) denoting the Laplace transform of u(x,t), equation (6.7)

becomes

(6.8) PwuGW(o)u ;(x 0)-

where G((a) is the Laplace transform of G:

G(Cd) " G(t)e' tdt
0

One finds that

;(w,) - --G(°) G'() +
Cd 2 O 2)~

if Go is integrable. If the character of solutions is determined by the symbol, we

should therefore look at the problem

P02; = 010)w + 1 G'10) ,

u g 1 1 G'(0)
or using1

G(0) + G'(0) G(O)

P 2 PWG'(0)

G(0) G(0) 2  xx
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•.'.'. This, of course, corresponds to the equation

o..e_ _ G'IO.M. ut x
G(O) utt - G(O)2 U x

From this one expects the singularity to propagate with a wave speed c = VG(O)/0 and to

decay with an amplitude factor exp(tG'(0)/2G(O)).

Coleman and Gurtin (6), [7] proved that if the acceleration was discontinuous, then

its wave speed and amplitude must be given by these expressions. In [33] and (37] it is

shown that these expressions for the speed and amplitude could be derived for the problem

5(6.7) without assuming discontinuities of acceleration. The demonstration of propagation

in [33] applies to propagating steps in displacement (propagating delta functions) as well

. J-as steps in velocity.

If a Newtonian term is included in the constitutive law, G contains a contribution

u8(0), and G(W) at 4 behaves like O1). The equation becomes parabolic, and smooth

(analytic) solutions are obtained. As i + 0, a boundary layer forms around the shock

front. This was shown numerically in [46]. An analysis of this boundary layer is given by

Narain and Joseph (33].

Renardy [37] studied the case where G does not contain a 5-function, but some

weaker singularity. Specifically, he considers the kernels

(6.9) - =

n-i

For a > 1, G(O) is finite, but G'(0) is not. The asymptotic behaviour of G(W) is

given by

*G(O) 0,-2+1/a)
(6.10) G~w) - + 01w

As one expects, there is a finite wave speed c - VG(0)/P. Solutions are zero in front of

the wave and nonzero behind it. Across the wave, however, they are of class C .  If

S. a ( 1, G(0) is infinite, and the asymptotic behaviour of G(W) is dominated by a term

0 1/6-2
O(W I ) or O(En W/,) in the limiting case a - 1. The wave speed is infinite and the

solution becomes analytic everywhere except at t - 0.

Similar studies can be done for small perturbation of rigid motions, see the work of
i azakia [23).
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7. SLIP SURFACE PROPAGATION IN NONLINEAR SHEARING PROBLEMS

Coleman and Gurtin [6], [7] studied simple shear flows of a viscoelastic liquid, which

involve a surface across which the acceleration is discontinuous. They showed that in a

*' material with a smooth memory function (no Newtonian viscosity), these discontinuities

propagate with a speed c - VG()/p. If the amplitude is smaller than a critical

amplitude, it decays with a factor exp(tG'(O)/2G(0)), if the amplitude is larger than

- the critical amplitude, it will reach - in a finite time ("blow-up"). This blow-up of

acceleration waves might be interpreted as development of a slip surface for the

velocity. No such result has bee proven.

Slemrod (44], Malek-Madani and Nohel [28], Gripenberg (51] and Hattori [16] have

studied simple nonlinear models. They show by contradiction using Riemann invariants and

the method of characteristics that, for suitably chosen initial data, a global C
1-solution

for the equation of motion cannot exist. This may mean the formation of a slip surface for

I the velocity. This is suggested in particular by the argument of Malek-Madani and Nohel

(281, but no full proof has been given. Numerical evidence for the development of such

discontinuities was found by Markowich and Renardy (29].

Slemrod [43], following a suggestion of Coleman and Gurtin [7], applies his result to

give an explanation of some of the various instabilities of shear flows collectively called

melt fracture. It is necessary that we interpret the proved loss of regularity as the

formation of a slip surface for the velocity. Melt fracture is an instability of flow of

molten polymers or polymeric solutions down capillaries. In the experiments (Tordella

(47]), the polymer is forced down the capillary by high pressure. Extrudates leaving the

capillary which at lower shear rates are smooth and continuous, become rough (shark skin

effect), irregular and ultimately disintegrate. There are different explanations of the

different types of instability which can occur. These are reviewed in the paper of Petrie

and Denn [35]. None of the explanations can be regarded as established. The mechanism

proposed by Slemrod has some possibilities in the case where fracture is associated with a

stick-slip phenomenon. There is some controversy about the presence or absence of slip in

experiments. If it does occur periodically, as it might in Slemrod's theory, it would be a
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candidate for the explanation of the wavy surfaces shown in the pictures of Tordella

(47]. It should be noted that the theory of Hunter and Slemrod [17] requires an entirely

different type of shear stress to explain the type of hysteretic melt fracture which

T1ordella calls ripple.

It would be interesting to have the conditions under which slip surfaces for the

velocity might develop from weaker slip surfaces or from smooth data.

;'.4

.-.4
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S. CLASSIFICATION OF EQUATIONS FOR FLOWS PERTURBING UNIFORM MOTION

Ultman and Denn [49] consider the equations for two-dimensional steady flow of an

upper convected Maxwell fluid. They linearize at a motion with uniform velocity and zero

, stress, and they show that these linearized equations change type when a viscoelastic

-, "Mach" number

M C

exceeds one. Here U is the velocity of the unperturbed uniform flow, and c is the wave

speed for propagation of singularities as considered in 16: c = G(O)/p - n/(A).

Ultman and Denn attempted to correlate some experimental observations of D. F.James

[18] with this change of type. James observes a sudden change in the slope of the heat

transfer curve as a function of velocity. This happens at a critical velocity, which, for

the polyox solution used by James, was about I cm/sec. It is not clear from the graphs how

* abrupt this change in slope is, but there is a change of slope. Ultman and Denn also

suggest that the transition from subcritical to supercritical flow might explain abrupt

changes in the drag coefficient observed by A. Fabula [13]. Again, the idea is that the

critical velocity at transition is the wave speed c. They make an estimate of c from a

molecular theory and correlate this prediction with the data of James. Of course any such

V estimate can at best be expected to give an order of magnitude, since the fluids used in

experiments are not really Maxwell fluids.

1. Luskin [27] studies the equations of Ultman and Denn as a first order system. He

reduces them to canonical form and investigates characteristics. The streamline is a

V.. double characteristic, two characteristics are always complex, and the remaining two are

complex for N < I and real for M > 1. Each characteristic has associated with it a

canonical variable, which is a linear combination of the two velocity components, the three

components of the extra stress and the pressure. This means that two of these variables

-:* can be discontinuous across streamlines, and two others can be discontinuous only for
.. >

We shall now show how results similar to those of Ultman and Denn apply to general

constitutive models without "viscosity". In linearization at uniform motion, the extra!:~
%, -31 -
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-4 stress is given byI

(8.2) - f G(t - T)A u(,T)dT ,
-

" "where
'.x U(t -T)

We assume G is smooth, positive and monotone decreasing. By differentiating (8.2) with

respect to t, holding x fixed, we find

3T a-t t,.

(8.3) -+ U-- G(O)a[u(x,t)] + f G'(t -t)a[u(aT)]dt,

-1 -

where the last term is of lower differential order. The leading term is the same as for

the Maxwell model, if G(O) is replaced by n/A.

It can be shown that the change of type is primarily associated with the behaviour of

the vorticity. Since we study motions in the plane, the vorticity curl u has only one

component, which we denote by a. We take the curl of the equation of motion, apply the

operation curl div to (8.3) and combine the two. In steady flow this leads to

2 2 a a2 a t
(8.4) (M2 - 1) 2  f G'(t - T)•a(•)dT

ax 3 x 2
1 2,(

The right side is again of lower order. The left hand side is elliptic when N < 1 and

hyperbolic when M > 1. The elliptic roots found by Luskin [27] correspond to the elliptic

equations a - -ti expressing the vorticity in terms of the stream function.

-32-"
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9. CLASSIFICATION OF THE QUASILINEAR SYSTEM OF EQUATIONS GOVERNING
THE STEADY FLOW OF AN UPPER CONVECTED MAXWELL FLUID

The flow of an upper convected Maxwell fluid is governed by the following system of

equations
du

p - + Vp - div T - 0, div u - 0~. ...
(9.1) dr

T + X[ - Vu T - T. VUT . def ,

., We consider two-dimensional flows. In view of the applications in Chapter 10, we want to

set

(9.2) U- (uv), T - [T y

We then obtain the equations

' 0 t + u0 + vo - 2ou - 2u - 2iu x -0 /X
t x y x y x

+ uX+ v - Yu - v - u(u + v ) - -rA,

" t + u x + vyy - 2v - 2y - 2vy - -y/

u +v - 0xx

The subscripts denote differentiation. In polar coordinates, we denote by u and v the

radial and azimuthal velocities and by ar,y the components of the stress in polar

coordinates. We then obtain the following system

v°a ue

(9.4) a + Ur + 20u - 2T "21u

vT8  yu ue)"T + UT + - o"d - 1j V+ -'-) L -v Pa
r r r r r r rVX r r

V'Ye ve v, 2v-r + 2M Y+u
yt + UYr + - - 2TVr 2y 2u -y +2t r r r

%'.% .- 33-
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u o  TO  2P (u + u +v U) +p rP M +°-
Lut +uur r -Or r r r

vve8  e Y Pe - uy 2
+vt- - + .+ +-

r r r r r r..

vI

Ur r r

The terms on the right of (9.3) and (9.4) are of lower order and do not enter into the

analysis of characteristics. The systems on the left are identical if we make the %,

identifications i -r and F---r "o

We consider steady solutions of (9.3) and (9.4). Thus we put the time derivatives

,. equal to zero and introduce - (u,v,O,T,yp). Equations (9.3) and (9.4) are of the

respective forms

(9.5) NX+ B f

and

(9.6) A + a-= f f

Characteristics of (9.5) are determined by the equations

(9.7) det(Z A(S) - 2(g)) = 0

With a = _ this leads to
dx' .

(9.8) (Cu + v) 21 + a 2)[2aT - p(au + v)
2 

+ a 2 + Y + (1 + a2 )I] = 0 .

Hence the streamlines

(9.9) u - v - 0

are double characteristics. There are two imaginary roots a = _ i. Finally, the last
bracket yields

9 10)p { - 2pTuv - ( T+2 )(T+ (V + )( + + + 2 2 + 2 + Y ) 2u

dx 2 2 2
u + a - Pu (U + 0-pU)

These characteristics are real or complex depending on whether the argument of the square

root is positive or negative. This argument of course depends on the solution. It should

be kept in mind here that the integral form of the Maxwell model imposes certain

-34-
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restrictions on the stresses (see Chapter 5). These roots are the ones which exhibit a

change of type.

The imaginary roots + i arise from the identity

-aV2

where C is the vorticity and iIis the steam function. It is easy to show that

(9.12) 0u + a - Pu 2)E + W~ + Y - Pv ) 42 + VT - Puv) 3xy-lower order.

ax a

This shows that the interesting characteristic roots (9.10) which can change type are

associated with the vorticity. Using (9.11), we find that the quantity on left of (9.12)

with #' replacing C~, is harmonic to within terms of lower order. in polar coordinates,

a~ the equation for chgaracteristics becomes

(9.13) r w-. r.h.s. of (9.10),

with UVT,Y,U interpreted as the physical components of velocity and stress in polar

coordinates.

-35

'pa%
% 

J%.

I AI



10. CHANGE OF TYPE IN SHEAR FLOW, EXTENSIONAL FLOW, SINK FLOW AND

CIRCULAR COUETTE FLOW OF AN UPPER CONVECTED MAXWELL FLUID

In this section we consider the problem of hyperbolicity of the linear equations

perturbing some special solutions of (9.1). The characteristic equations (9.10) and (9.13)

S. are useful for this. To compute the characteristics of the perturbation we need only to

replace the U,V,T,O,y in these formulas with the special values that (9.1) requires for

special flows.

(i) First, we again consider the uniform flows discussed in 48; u = U,

V = Y - 0 0. For these we find from (9.10) that

(10.1)+
dx M2 -1

where M2 U2 /C 2 , C2  n/Xp(= G--) is the wave spread. The characteristics are
P )

straight lines which start as lines perpendicular to the flow at M = I and tilt more

toward the free stream as M > I is increased.
.,

(ii) Our second application is to shear flow. We find, using (9.3), that

2
(10.2) u = Ky, T - n; a - 2 , y = v = 0

where the shear rate K is a constant. Inserting the fields (10.2) into (9.10), we find

that

2 2K y A22 ,22

2
XKI c1

(10.3) d 2 2 2
1 + 222 2  

[1 + 2I 2 ,2 2 22
2 -.- 2 + - 2K-c c- 2

c

The vorticity is hyperbolic outside a strip defined by

22
(10.4) 2*y. 22 K+

c
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(iii) In extensional flow, we find, using (9.3), that

(10.5) U - ax, V -sy, T = 0, 0 - 2ns/(1 - 2Xs), y - -2ns/( + 2s),

where 0 < a < 1/2A. The stretch rate a is a positive constant, small enough to keep a

bounded and positive. The unbounded 0 at s - 1/2A is one of the many undesirable

properties the upper-convected Maxwell model. Inserting the field (10.5) into (9.10), we

find that

2 2 2

(10.6 AX . ps XYpa x a f + Y 
1b 1 / 2

.- 1 - 2X 2 /1- 2 2

where

a2  L. b2 1

P 01 - 2Xs) Pe (1 + 2Xs)

We get real characteristics, obeying (10.6), outside the ellipse

' 2 2, + x> 1 .
-2 2 -

a b2

S(iv) Our fourth application is to sink flow. Here we must work with the polar

equations (9.4) and (9.13). For sink flow

(10.7) u - -Q/r, Q > 0 is the sink strength,

4.4 V - T -0O.

From (9.4), we find that

do + 2dr + 2. 0.

dr r XQ r

We find that

2
(10.8) 0 - 2n Q/r

From (9.4)3, we find that

. _ . 0
dr r XQ r

We next introduce # through the change of variables y -p + p#/AQ, where

4

+ -] + r = 0.
dr - r

r2

We require that * be bounded as r + 0 and find

-37-
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(10.9) 2 = 2 /2Q r dr

where the last factor ise an indefinite integral. For small r, we find that

2
.4. ~4 -r log r >0

Obviously * is positive at every stationary point. The only stationary point is at

r =- and * increases monotonically from zero to )XQ.

* Turning next to (9.13), using (10.7-9), we find that real characteristics exist and

are given by (9.13) when

(1.1) 11+ + (f [~ p,2 - 2rQ >

r 2 Q r2

The condition for hyperbolicity in satisfied if

PQ > 2nI

that is, when the flow rate is large. In this case the flow is hyperbolic in the circle

(10.11) r < 2n

The differential equations for the net of characteristics covering the hyperbolic

.. i.circle at the origin is

%Nr-dO + 2 UUY -+

/;u t ( )' - 0 2_ n

r2

jJ(v) Our fifth application is to Couette flow outside a rotating circular cylinder of

radius a. We suppose that the fluid sticks to the rod, and the rod rotates with an

angular frequency n. We assume that v - v(r), u - a 0. Then using (9.4)5 and (.)

we find that

v-la 2/r,

~2  2
T 2a li/r

and from (9.4)3

y 2 2 /U

-38-
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From (9.13), we find that
r Le

rd 2 l2J
c r

To have real characteristics it is necessary and sufficient

2 def a4 U2  c
E(r) = 2(

c r r

Moreover, E(I -- 1

4£ 2 ) 2c 2 "-'

dE 22-cSdr c r 
2 2

first increases, then decreases, with a single maximum at r - c given by

.' s162 c

which is positive when

(10.12) a4 >-

4% If (10.12) holds then there are two values

24
4~ 2 / 2 4"

61). c1± 1 2a4

at which Z.(r2 ) 0. If

c2

2 2 2
a > 4A2c

2 + ,
2

then -(a) > 0 and the vorticity is hyperbolic with real characteristics given by (9.13)

in the annulus

2 2 822
a 2 r 2 ex c

6).c
1- 1- 2a4

fla

If (10.12) holds and

2 22 c 2
a < 4X. c + li

-39- 
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then E(a) < 0 and the vorticity is hyperbolic with real characteristics given by (9.13)

in the annulus

8X2c2  2 2

Cr <

I 116X c _ 1 16X c
12 a4  112 a4

(vi) M. W. Johnson (private communication) has studied the flow of an upper convected

4.. Maxwell fluid between eccentric rotating cylinders. He assumes a small gap and uses the

lubrication approximation. His analysis shows that change of type occurs at high

* Weissenberg numbers.j

-- 40
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11. CLASSIFICATION OF THE QUASILINEAR SYSTEM OF EQUATIONS
GOVERNING STEADY FLOWS OF A CLASS OF OLDROYD MODELS

The Oldroyd models under discussion are given by (5.4) and (5.5). When a - 1, this

model reduces to the upper convected Maxwell model which we studied in 19 and 10.

We have

j (u +ux  2 Uy x

2" 1(uy+ ) uv

yy

_1 (Uy -v x )
0 2 v"

2 (Vx - us) 0

This gives rise to the following quasilinear system

u x + voy + T(vx - uy) - a2oux + T(Uy + Vx)] - 2pux  --/A %

uT + vt + 1 -v ( v (q + y)(u + v U(u + v -rAx y c')Cy-Vx  2 - ( ( + x ) - Uy x%

(11.1) uY + vy + T(u - V ) " a[2yv + T(u + v )] " 21jv - - I
x y y x y y x

P(uux + vuy) + Px -x y 
-0

x y x x y

P(uV + vv) + p T - yy 0(Ux " x

u + v 0.x y

The analysis of characteristics follows the one used in 19 exactly. We find

characteristic directions, a - -dy/dx from the equation

(11.2) (1 + a2 )Cu + v)2{p(Qu + v)2 + (t2')( 2 
- 1) - 2Ta - (2 + 1)(ij + a(-.)) - 0 ,

corresponding to (9.8). We can prove that the vorticity changes type from elliptic to

hyperbolic when the sign of

20 2
(11.3) Pu+ a) (I + a)- u [( + a) + (a - 1) v2 + (Puv- T)

21 2 22

changes from negative to positive.

4.
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* For shear flows, we find using (11.1) that

U K Vnic 11C

1+C2X
2 (1 a a2) defD

0 X .'(a + 1)T,

y=A'c(a - ),

where K > 0 is the shear rate.

Condition (11.3) reads now

D22 2D 2a-22 2

pl y B2  > _a +1) - a:2K2 -n ) 2( a)'2 jil -

i2e.D22D

where u-(a -_1) nx+P 2
'def D D

if a is in the range -1 < a 4 1, B is always positive, and (11.4) describes the

exterior of a strip in the x,y-plane (it is easy to see that the quantity on the right of

the last inequality is always positive).

In extensional flow, we find using (11.1) that

whr O-< for V> > or -eeT-of s<- Y -2

wher 0-2a -I or1>a r for -1 4 a < 0 (no restriction if

a -0)

Condition (11.3) is now evaluated as

Ps 2 x2 [oI + 2risC2a 2 s - 1)~ + PS 
2 y2 [,, + 2ns(l + 2a 2As)

+ 2 22Hu22 22
1 a-4aaX 1-a s

tet us distinguish two cases

-42-
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) + 2ns(2a 2A - 1) > 0 (this is the case for a " ±1).

I - 4a 
2 2a2

Then the region (11.5) is the exterior of the ellipse

2 2
x+ = 1

A 2 2

where

2
+ 2is(2a 2s + 1)

2 1 - 4a
2 )

2
s
2

def - 2

+ 2s12a 2s - 1)
-''' 2 1-4a 2X2s8

2

def 2a1s

2
"ii) + 2n*(2ae2 - 1) < 0. Then (11.5) yields

2 2

.~ - 4a2X a
2

• ,1,

A2 2

A 2 B
where

2 1

A =, + 2a 2Xs)

A2 1 - 4a
2)2 s

2

.9 2
P.

i  + 2ns(2a 2 s - 1)

2 1 - 4a
2 X2 s

2

gquation of t,.e vorticity, steady case

One easily finds the equation satisfied by the vorticity C - -A*, where * is the

stram function given by it . u, v "- :

-43-
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T, -. I,, -. .. .. . I

r2
(11.6) '-Pu + U (1 + a) +-2 (a WC- + 2(-Puv + T~,x

+ [-2 + 11 + a(a - 1) + Y-(a + 1)]C + X.a. d 4ef xx 2 BC +y y

This a mixed elliptic-hyperbolic second order equation. it is hyperbolic for

Sd.2
A 2-AC > 0, I.e. exactly when (11.3) holds (see the previous discussion).

Equation for vorticity, unsteady case.

in unsteady planar flow the equation for vorticity is

2
(11.7) a(1 + a[ : 2(.V

at at 2 at

+ .Pu2 _ Ui + ( a) + -1(1 - a)) + 2(puv axayC
2 2 ax2 Ay

+ COy 
2 

- + (1-a) - I(a + 1)X [1.oj

T a 2

4% The term in brackets on the right hand side is of lover order and does not involve any time

'S derivative. The first term on the left-hand side is irrelevant for the analysis of the

type of equation (11.7), but it shows how (11.7) reduces to the unsteady Newtonian case

*S ,p when A=0 (recall that pa

Equation (11.7) is of evolution type (hyperbolic) when

*55~ (1.e 2 -a)~- + a))I-fn -A (-a)- (I + a))]J 0

(11.9) X[I (1 a) (I + aJ-n< 0

'-44
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* 12. QUASILINEAR SYSTEMS FOR SIMPLE FLUIDS WITH FADING MEMORY OF THE COLEMAN-NOLL TYPE

The determinate stress T in a simple fluid is given by an isotropic functional of

% the history of the relative Cauchy strain G(s) -Ft - s)Ftt - s) - 1, i.e.
Ft-t - )=t i- e

(1 2 .1) 
.T . [ 2 G (7T I

-0

Sfor all constant orthogonal tensors B By taking the material derivative of (12.1), we

obtain
~d2G

(12.2) 7 t -T ,

% : where r denotes the first functional derivative of F. We have alreadynoted in 15 that

different choices for the domain of the linear functional lead to different

representations of 1I . If, following Coleman and Noll, we assume that the functional is

* 2_defined on a weighted L -space, we obtain an integral

dG dG(s)(12.3) I[G I j - .(s,G) d20 - dt

Here K(s,G) is a fourth order tensor depending on s and on the value

{G(), 0 4 a < -}. For the following, we assume that K and its first derivative (as

functions of a) are integrable. In particular, it follows that K is uniformly bounded

in a.

The isotropy condition can be written as

(12.4) Kijkl(S,) = QaiQbjQckQdlKabcd(,852

This consequence of isotropy does not appear to lead easily to very explicit

representations for K in situations where G is not confined to special motions. Of

course K is symmetric in the first two indices, and only the symmetric part in the last

two indices enters into (12.3).

We next note that the material derivative of G is given by
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d7 d. -TNTIT T -1~t

(12.5) G(s) =-(F '(t)F (t - )F(t - )?- (t))dt dt - -

(tfr(t)G(s) - (s)P(t)r t)- L 0C

- dq(s)
-LTG(s)-Gs)- ---

where ji(L,t) -VVj(x,t) is the present value of the velocity gradient. Hence, we find

- dG Cs)
(12.6) f ijk 8 .2 kl d - f i 4K )G l()d L (t) .~

0 ijk dt 0 jl'Yijlk p1pk

dQ(s)

0 K Cs (, G) - do

it follows that

(12.7) - ( 
4 jpx~t)Lpk(x~ t) + N (x,t)
dt ikp k - ij-

where

(12.8) M jk(3,t) (K)G Wd
o kp ijkl + Kijlk)Gpl~sd

00

(1 e9 ma writ (1.9 as('~) d a (,~)

*j dt ijkp kp ido kp i
0her

Mt jkkp ijkp kp ijk

and S is symmetric and A skew symmetric in lcp. 0and Ql denote the symmetric and

skew syetric part of .
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In its general form, (12. 10) and the equations of motion are a quasilinear system of

first order in the derivatives of pi , 1 we could write out conditions for

evolutionarity or for change of type in steady flow as before. However, we can not in

~ general isolate an equation for the vorticity, as we did for the Oldroyd models.

We can identify a class of models which is more special than the completely general

equation (12.10), but much more general than the three-constant Oldroyd model. Let us

assume 
that
(12.11 P +5 + 5 P +5 p ,

-. (1.1Sijkp 2 ik ip jk ip +ip jk + p ik

where R is any second order tensor, expressible by integrals of the type (12.8). we need

no assumptions at all on the anti-symmetric part Aijkp. Using (12.11) we may reduce

(12.10) to

T P D + +Aij + Nidt ik kj Jkki i kppi

(12.12)

di -PD+DP T+ -1(A.Q+ (Ani) + N,
t == 2 =

A where Aijkp is symmetric in ij and skew symmetric in kp.

The three constant Oldroyd model arises from (12.12) with special choices for the

8% tensors and j:

-Aijkl ik jil + k'il il Tkj jiki

(1.1) ik ~ik A~ ik

Ni - Ij

- '8 We mow demonstrate that the quasilinear system associated is (12.12) is expressible in

terms of the vorticity =curl U. The equations of motion are
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du
(12.14) p -Vp + div -v, div 0

dS

We apply the operations curl and to (12.14), and find that to leading orderthet

(12.15) P2 AL curl div d .
dt2- dt

The question is now whether the right side of (12.15) is expressible in terms of C, to

leading order. Clearly 2 is expressible in terms of C, so we need no restrictions on

A. Then, working the part with tensor P, we calculate

C abiab i (Pikkj + PjkDki ) - Cabi [PikbajDkj + Pjkabaj'ki +

I p 2 ak 1 ____ +

2 abi ikV 3x.D +2 CabS. k axd3x'xk

Noting now that

2
V u - -curl C,

we get

S abiikb(curl + P a C a +

2 - A b ( 2 k jk a

It follows now that to leading order (12.15) is a second order quasilinear system of

equations for the components of the vorticity.

J r.'

Acknowledgement. The authors would like to acknowledge some useful discussions with

M. Luskin on the subject of this paper.

,%

-48-

%,

W. . . .J. . ... . .r . . . .. . .

* . -" - ,, - . " ,. •



REFERENCES

S1 . Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary conditions, Comm.

* Pure Appi. Math. 12 (1959), 623-727 and 17 (1964), 35-92.

(2] M. Ahrens, D. D. Joseph, M. Renardy and Y. Renardy, Remarks on the stability of 
I

viscometric flow, submitted to Meol. Acts.

[4 3] U. Akbay, . Becker, S. Irozer and S. Sponagel, Instability of slow viscametric flow,

Mech. Res. Comm. 7 (1980), 199-204.

(4] B. Bernstein, V. A. Kearaley and L. J. Zapas, A study of stress relaxation with

finite strain, Trans. Soc. Rheol. 7 (1963), 391-410. i
1 51 G. Bghme, Str~stungamechanik nichtnewtonscher Fluide, Teubner Studienbicher

Mathematik, a. G. Teubner, Stuttgart 1981.

(6] B. D. Coleman, M. E. Gurtin and 1. R. Herrera, Waves in materials with memory 1,

* Arch. Rational Mech. Anal. 19 (1965), 1-19.

~1% 7] B. D. Coleman and M. E. Gurtin, Waves in Materials with memory 11, Arch. Rational

Mech. Anal. 19 (1965), 239-26S.

[81 B. D. Coleman, Rocking and drawing In polymeric fibers under tension, Arch. Rational

Mech. Anal. 83 (1983), 115-137.

(9] B. D. Coleman and W. Noll, An approximation theorem for functionals with applications

in continuum mechanics, Arch. Rational Mech. Anal. 6 (1960), 355-370.

(10] M. J. Crochet, private communication.

(11] C. F. Curtiss and R. B. Bird, A kinetic theory for polymer melts, J. Chem. Phys. 74

(1981), 2016-2033.

(12] . L. Ericksen, Equilibrium of bars, . Elasticity 5 (1975), 191201. .4

(13] A. G. Fabula, An experimental study of grid turbulence in dilute high-polymere

solutions, Ph.D. Thesis, Pennsylvania State Univ., University Park 1966.

(14) 1. M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc.

Translations 29 (1963), 295-380.

%

-49-

Ile

NO*- I* -N-. '6S

A Wa N



( (15] H. Giesekus, A unified approach to a variety of constitutive models for polymer

fluids based on the concept of configuration dependent molecular mobility, Rheol.

-* Acta 21 (1982), 366-375.

Z.. [16] H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic

equations, Quart. Appl. Math. 40 (1982/83), 113-127.

(17] J. K. Hunter and M. Slemrod, Unstable viscoelastic fluid flow exhibiting hysteritic

phase changes, Phys. Fluids 26 (1983), 2345-2351.

118] D. F. James, Laminar flow of dilute polymer solutions around circular cylinders,

Ph.D. Thesis, California Institute of Technology, Pasadena 1967.

(19] A. Jameson, Iterative solution of transonic flows over airfoils and wings, including

flows at Mach 1, Comm. Pure Appl. Math. 27 (1974), 283-309.

(20] A. Jameson, Transonic flow calculations, in: H. J. Wirz and J. J. Smolderen (ed).:

Numerical Methods in Fluid Dynamics, McGraw Hill/Hemisphere, Washington 1978.

[21] M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows

non-affine deformation, J. Non-Newtonian Fluid Mech. 2 (1977), 255-270.

(22] A. Kaye, Co A Note 134, The college of Aeronautics, Cranfield, Bletchley, England

1962

-! (23] J. Y. Kazakia, The evolution of small rotational perturbations to a uniform rotation

of a viscoelastic fluid contained between parallel plates, J. Non-Newtonian Fluid

Mech. (to appear).

[24] J. Y. Kazakia and R. S. Rivlin, Run-up and spin-up in a viscoelastic fluid, Rheol.

N. Acta 20 (1981), 111-127; R. S. Rivlin, II-IV, Rheol. Acta 21 (1982), 107-111 and 213-

222, 22 (1983), 275-283.

(25] A. I. Leonov, Nonequilibrium thermodynamics and rheology of viscoelastic polymer

media, Rheol. Acta 15 (1976, 85-98.

126] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications

I, Springer, Berlin-Heidelberg-New York 1972.

[27) M. Luskin, On the classification of some model equations for viscoelasticity, Rheol.

Acta (to appear).

-50-

A4.P

" -# ' ~~. %% , , , ,, .: ,;. , . . . _. ,' .. . ' . .-. . . . _ .. . . - " . '" ''



[28] R. Malek-Madani and 3. A. Nohel, Formation of singularities for a conservation law

with memory, submitted to SIAN 3. Math. Anal.

[29] P. Markowich and M. Renardy, Lax-Wendroff methods for hyperbolic history value

problems, SIAN 3. Num. Anal. 21 (1984), 24-51.

[30] K. S. Mock, Systems of conservation laws of mixed type, 3. Diff. Eq. 37 (1980),

70-88.

[31] V. Murman, Analysis of embedded shock waves calculated by relaxation methods, Proc.

AIAA Conf. on Computational Fluid Dynamics, Palm Springs 1973, 27-40.

[32] E. Hurman and 3. D. Cole, Calculation of plane steady transonic flows, AIAA J. 9

(1971), 114-121.

[33] A. Narain and D. D. Joseph, Linearized dynamics for step jumps of velocity and

displacement of shearing flows of a simple fluid, Rheol. Acta 21 (1982), 228-250.

[34] 3. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized

elasticoviscous liquids, Proc. Boy. Soc. London A 245 (1958), 278-297.

[35] C. 3. S. Petrie and M. M. Denn, Instabilities in polymer processing, AlChE 3. 22

(1976), 209-236.

(36] S. I. Regirer and I. M. Rutkevich, Certain singularities of the hydrodynamic

equations of non-Newtonian media, 3. Appl. Math. Kech. 32 (1968), 962-966.

[37] M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in

linearly viscoelastic liquids, Rheol. Acta 21 (1982), 251-254.

[38] M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay

and an application to polymer rheology, SIAN 3. Math. Anal. 15 (1984), 333-349.

[39] M. Ronardy, A local existence and uniqueness theorem for a K-BZ fluid, submitted to

Arch. Rational Mech. Anal.

[40] I. M. Rutkevich, The propagation of small perturbations in a viscoelastic fluid, 3.

Appl. Math. Mech. 34 (1970), 35-50.

[411 I. M. Rutkevich, On the thermodynamic interpretation of the evolutionary conditions

of the equations of the mechanics of finitely deformable viscoelastic media of

Maxwell type, J. Appl. Math. Mach. 36 (1972), 283-295.

-51-

S% .. . ..... -

.. .



(42] J. C. Saut and D. D. Joseph, Fading Memory, Arch. Rational Mech. Anal. 81 (1983),

53-95.

[43] M. Slemrod, Unstable viscoelastic fluid flows, int R. L. Sternberg, A. J. Kalinowski

and J. S. Papadakis (ed.), Nonlinear Partial Differential Equations in Engineering

and Applied Sciences, Marcel Dekker, New York-Basel 1980, 33-43.

(44] M. Slemrod, Instability of steady shearing flows in a nonlinear viscoelastic fluid,

Arch. Rational Mech. Anal. 68 (1978), 211-225.

[45] K. Straub, Zur Untersuchung der Anlaufatr8mung von viskoelastischen Flaissigkeiten,

Rheol. Acta 16 (1977), 385-393.

[46] R. I. Tanner, Note on the Rayleigh problem for a viscoelastic fluid, ZAMP 13 (1962),

573-580.

(47] J. P. Tordella, Unstable flow of molten polymers, in: F. Eirch, Rheology: Theory

and Applications, Vol. 5, Academic Press, New York-London 1969.

(48] C. A. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, in: S.

Fl{igge (ed.), Randuch der Physik 111/3, Springer, Berlin-Heidelberg-New York 1965.

149] J. S. Ultman and M. M. Denn, Anomalous heat transfer and a wave phenomenon in dilute

polymer solutions, Trans. Soc. Rheology 14 (1970), 307-317.

[50] C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New

York-San Francisco-London 1977.

(51] G. Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear

viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), 954-961.

DDJ/NR/JCS/ed

-52-

I%
% % % %



SECURITY CLASSIFICATION OF THIS PAGE (3hen D04a Xate0 __________________

* READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1REPORT NUMBER 2. OVT ACCESSION NO. 3. RECIPIENT'Sl CATALOG NUMBER

* .*4. TITLE (and Subti) S. TYPE OF REPORT a PERIOD COVERED

Summary Report - no specific
HYPERBOLICITY AND CHANGE OF TYPE IN THE FLOW reporting period
OF VISCOELASTIC FLUIDS S. PERFORMING ORG. REPORT NUMBER

:N7. AUTHOR(Qa I. CONTRACT OR GRANT NUMBER(*)

'S DnielD. osep, Mihae RenrdyDAAG29-80-C-0041, DAAG-29-Danil D.Joseh, Mchae Renrdy82-K0051, MCS-7927062, Mod.2,
and Jean-Claude Saut MCS-8210950, MCS-8215064

1*. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASKC

a' ~ Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

*610 Walnut Street Wisconsin Work Unit Number 2 -
Madison, Wisconsin 53706 Physical Mathematics

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 1984
(See Item 18 below) IS. NU 52ER OF PAGES

14. MONITORING AGENCY KNME & ADDRESS(lf different from Controllng Office) 1S. SECURITY CLASS. (of this report)

1S. -DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect snowed In Stock it. II dlfert from Report)

1S. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

19. KEY WORDS (Continue on reverse oid. it nocessay mid idmotit by block ntamber)

Change of Type, Symbol of Differential Operator, Characteristics,
Viscoelasticity

20. ABSTRACT (Centimme an reverse side It necessary mid fdonlity by block Memiber)

The equations governing the flow of viscoelastic liquids are classified
according to the symbol of their differential operators. Propagation of
singularities is discussed and conditions for a change of type are inves-
tigated. The vorticity equation for steady flow can change type when a
critical condition involving speed and stresses is satisfied. This leads
to a partitioning of the field of flow into subcritical and supercritical
regions, as in the problem of transonic flow.

, ~ ~ D I5 DO R 1472 EDITION OF I NOV 6S IS OBSOLETE UCASFE

5 SECURITY CLASSIFICATION OF THIS PAGE (U9.en bale SnloeQe

a.ON.



- -

-C
le~'r.-2 .

-j"-

'.1 ~ ~ 4 t .'N

Vt, 12''J

14t


